If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+78x+216=0
a = 1; b = 78; c = +216;
Δ = b2-4ac
Δ = 782-4·1·216
Δ = 5220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5220}=\sqrt{36*145}=\sqrt{36}*\sqrt{145}=6\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-6\sqrt{145}}{2*1}=\frac{-78-6\sqrt{145}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+6\sqrt{145}}{2*1}=\frac{-78+6\sqrt{145}}{2} $
| 3x-4x-4=9 | | K(x)=-3.4(-12)-11 | | 2(x-6)-12=24 | | 6(x^2+78x+216)=0 | | 1+2x/3+3-x/7=5/21 | | 4(x+2)-3x=3x+5-2x+1 | | 0.03+0.14(x+6000)=1690 | | 2(2x-4)+2=3x-1-2x-2 | | 4(10-x=7(x-1) | | 3/x+8=16 | | X2=9x | | -8-7x=4x-96 | | 21x+5=118 | | 14+2x-3=4x-2x+3 | | 3x+8=-19+6x | | -8(x-5)=10-2(x+6) | | 5x+4(x-1)=10x+4 | | 12-7m=3m | | 10+10x+5=-125 | | 8x+1+5x=-51 | | 6(7n+1)=6-2n | | 3(-4x-7)=123 | | 1=7b | | 6(3+2x)-4x=2(x-6) | | m/5=11/17 | | 36=3/2x | | x-8=22+6x | | 3x-8=-4x-36 | | a+|-7|=21 | | -7=n-1 | | -3x+5x-8=2(x-3)-17 | | -2x+6=-2+6x |